精英家教网 > 高中数学 > 题目详情
(2013•德州二模)若抛物线y2=2x上的一点M到坐标原点O的距离为
3
,则点M到该抛物线焦点的距离为
3
2
3
2
分析:求得点M的坐标,将点M到该抛物线焦点的距离转化为点M到抛物线y2=2x的准线的距离即可.
解答:解:设点M(
y2
2
,y),∵|MO|=
3

(
y2
2
-0)
2
+(y-0)2=3,
∴y2=2或y2=-6(舍去),
∴x=
y2
2
=1.
∴M到抛物线y2=2x的准线x=-
1
2
的距离d=1-(-
1
2
)=
3
2

∵点M到该抛物线焦点的距离等于点M到抛物线y2=2x的准线的距离,
∴点M到该抛物线焦点的距离为
3
2

故答案为:
3
2
点评:本题考查抛物线的简单性质,考查转化思想与方程思想,求得点M的坐标是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•德州二模)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,该双曲线与抛物线y2=16x的准线交于A,B两点,若|AB|=6
5
,则双曲线的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程
y
=0.68
x
+54.6


表中有一个数据模糊不清,请你推断出该数据的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)为了解某校教师使用多媒体进行教学的情况,将全校200名 教师按一学期使用多媒体进行教学的次数分成了[0,9),[10,19),[20,29),[30,39),[40,49)五层.现采用分层抽样从该校教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图,据此可知该校一学期使用多媒体进行教学的次数在[30,39)内的教师人数为
40
40

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下
等级 1 2 3 4 5
频率 0.05 m 0.15 0.35 n
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

同步练习册答案