精英家教网 > 高中数学 > 题目详情

.(本题满分18分)

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设二次函数,对任意实数,有恒成立;数列满足.

(1)求函数的解析式和值域;

(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,

并说明理由;

(3)已知,是否存在非零整数,使得对任意,都有

 恒成立,若存在,

求之;若不存在,说明理由.

 

【答案】

解:(1)由恒成立等价于恒成立……1分

从而得:,化简得,从而得

所以,………3分

其值域为.………………………………………………4分

(2)解:当时,数列在这个区间上是递增数列,证明如下:

,则

所以对一切,均有;………………………………………7分

,从而得,即

所以数列在区间上是递增数列.………10分

注:本题的区间也可以是等无穷多个.

另解:若数列在某个区间上是递增数列,则

…7分

又当时,

所以对一切,均有

所以数列在区间上是递增数列.…………………10分

(3)(文科)由(2)知,从而

;  ………12分

,则有

从而有,可得,所以数列是以为首项,公比为的等比数列,……14分

从而得,即

所以

所以

所以,  ………………16分

所以,

.    ………………………18分

(3)(理科)由(2)知,从而

;………12分

,则有

从而有,可得,所以数列为首项,公比为的等比数列,………………………14分

从而得,即

所以

所以,所以

所以,

.…………………………16分

,所以,恒成立

为奇数时,即恒成立,当且仅当时,有最小值为。

为偶数时,即恒成立,当且仅当时,有最大值为。[

∴,对任意,有。又非零整数,……………18分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)

若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:

①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);

②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);

再利用可求得,进而求得

根据上述结论求下列问题:

(1)当)时,求数列的通项公式;

(2)当)时,求数列的通项公式;

(3)当)时,记,若能被数整除,求所有满足条件的正整数的取值集合.

查看答案和解析>>

科目:高中数学 来源:2011届上海市卢湾区高三上学期期末数学理卷 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.
已知负数和正数,且对任意的正整数n,当≥0时, 有[, ]=
[, ];当<0时, 有[, ]= [, ].
(1)求证数列{}是等比数列;
(2)若,求证
(3)是否存在,使得数列为常数数列?请说明理由

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题

(本题满分18分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;

(Ⅲ)过AB分别作抛物C的切线交于点M,求面积之和的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市青浦区高三上学期期终学习质量调研测试数学试卷 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

,对于项数为的有穷数列,令中最大值,称数列的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.

考查自然数的所有排列,将每种排列都视为一个有穷数列

(1)若,写出创新数列为3,4,4,4的所有数列

(2)是否存在数列的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.

(3)是否存在数列,使它的创新数列为等差数列?若存在,求出满足所有条件的数列的个数;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试数学文 题型:解答题

(本题满分18分,其中第1小题6分,第2小题6分,第3小题6分)
已知数列的首项为1,前项和为,且满足.数列满足.
(1) 求数列的通项公式;
(2) 当时,试比较的大小,并说明理由;
(3) 试判断:当时,向量是否可能恰为直线的方向向量?请说明你的理由.

查看答案和解析>>

同步练习册答案