【题目】自地面垂直向上发射火箭,火箭的质量为m,试计算将火箭发射到距地面的高度为h时所做的功.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ , ]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,S△ABC= ,c=2,f(C+ )= ﹣ .求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,如圆是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx;g(x)= .
(1)讨论函数f(x)的单调性;
(2)求证:若a=e(e是自然常数),当x∈[1,e]时,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],当a>1时,对于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.
(Ⅰ)若是奇函数,求的值.
(Ⅱ)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由.
(Ⅲ)若函数在上是以为上界的函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50.通项公式: ,如果把这个数列{an}排成如图形状,并记A(m,n)表示第m行中从左向右第n个数,则A(10,4)的值为( )
A.1200
B.1280
C.3528
D.3612
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)ex﹣kx2+2,k∈R. (Ⅰ) 当k=0时,求f(x)的极值;
(Ⅱ) 若对于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲线过原点,且在x=±1处的切线斜率均为﹣1,给出以下结论: ①f(x)的解析式为f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的极值点有且仅有一个;
③f(x)的最大值与最小值之和等于0.
其中正确的结论有( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com