精英家教网 > 高中数学 > 题目详情
设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=(  )
A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}
分析可得,
M为方程x2+2x=0的解集,则M={x|x2+2x=0}={0,-2},
N为方程x2-2x=0的解集,则N={x|x2-2x=0}={0,2},
故集合M∪N={0,-2,2},
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={x|x2-3≤0},则下列关系式正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x2-2x-3<0},N={x|2x-2>0},则M∩N等于
(1,3)
(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|
x
2
∈Z}
N={n|
n+1
2
∈Z}
,则M∪N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x2-4x<0,c∈R},N={x||x|<4,x∈R}则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x2-3x≤0},则下列关系式正确的是(  )
A、2⊆MB、2∉MC、2∈MD、{2}∈M

查看答案和解析>>

同步练习册答案