精英家教网 > 高中数学 > 题目详情

从原点O向圆x2+y2-4y+3=0作两条切线,切点为A,B,则数学公式数学公式的值为________.


分析:将圆方程化为标准方程为:x2+(y-2)2=1,表示以C(0,2)为圆心,1为半径的圆,再分别计算的模及其夹角,利用向量的数量积公式,即可求得结论.
解答:将圆方程化为标准方程为:x2+(y-2)2=1,表示以C(0,2)为圆心,1为半径的圆.
∵原点O向圆x2+y2-4y+3=0作两条切线,切点为A,B,
∴∠AOC=30°,∠BOC=30°
∴∠AOB=60°
∵OC=2,CA=CB=1,OA,OB为圆的切线


故答案为:
点评:本题以圆为载体,考查圆的切线性质,考查向量的数量积,解题的关键是分别计算的模及其夹角
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.
(2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+2x-4y+3=0;
(1)若圆C的切线在x轴,y轴上的截距相等,求此切线方程;
(2)求圆C关于直线x-y-3=0的对称的圆方程
(3)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为原点,且有|PM|=|PO|,求使|PM|最小的P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+2x-4y+3=0.
(Ⅰ)求圆心C的坐标及半径r的大小;
(Ⅱ)已知不过原点的直线l与圆C相切,且在x轴、y轴上的截距相等,求直线l的方程;
(Ⅲ)从圆C外一点P(x,y)向圆引一条切线,切点为M,O为坐标原点,且有|MP|=|OP|,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;
(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+2x-4y+3=0
(1)若圆的切线在x,y轴上的截距的绝对值相等,求此切线方程;
(2)从圆外一点P(x1,y1)向圆引一条切线,切点M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小值.

查看答案和解析>>

同步练习册答案