精英家教网 > 高中数学 > 题目详情
已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.
(2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.
分析:将圆C的方程化为标准方程,找出圆心坐标与半径,
(1)分两种情况:当切线过原点时设为y=kx,由圆心到切线的距离等于圆的半径列出关于k的方程,求出方程的解得到k的值;当切线不过原点时,设为x+y=a,同理求出a的值,即可确定出切线方程;
(2)根据|PM|=|PO|,利用两点间的距离公式列出关系式,得到x0与y0的关系式,用y0表示出x0,代入|PM|中,利用二次函数的性质求出|PM|最小时y0的值,进而确定出x0的值,即可确定出此时P的坐标.
解答:解:⊙C:(x+1)2+(y-2)2=4,圆心C(-1,2),半径r=2,
(1)若切线过原点设为y=kx,则
|-k-2|
1+k2
=2,
解得:k=0或
4
3

若切线不过原点,设为x+y=a,则
|-1+2-a|
2
=2,
解得:a=1±2
2

则切线方程为:y=0,y=
4
3
x,x+y=1+2
2
和x+y=1-2
2

(2)∵|PM|=|PO|,即
x02+y02+2x0-4y0+1
=
x02+y02

∴2x0-4y0+1=0,
对于|PM|=
x02+y02+2x0-4y0+1
=
5y02-2y0+
1
4

∵P在⊙C外,
∴(x0 +1)2+(y0-2)2>4,
将x0=2y0-
1
2
代入得5y02-2y0+
1
4
>0,
∴当y0=
1
5
时,5y02-2y0+
1
4
最小,此时|PM|最小,x0=2y0-
1
2
=-
1
10

∴|PM|min=
1
20
,此时P(-
1
10
1
5
).
点评:此题考查了圆的切线方程,圆的标准方程,以及直线与圆的位置关系,当直线与圆相切时,圆心到切线的距离等于圆的半径,熟练掌握此性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知⊙C:x2+y2=1,点A(-2,0)和点B(2,a),从点A观察点B,要使视线不被⊙C挡住,则实数a的取值范围是(  )
A、(-∞,-2)∪(2,+∞)
B、(-∞,-
2
3
3
)∪(
2
3
3
,+∞)
C、(-∞,-
4
3
3
)∪(
4
3
3
,+∞)
D、(-
4
3
3
4
3
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C:x2+y2+Dx+Ey+F=0,则F=E=0且D<0是⊙C与y轴相切于原点的(  )
A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知C:x2+y2+2x-4y+3=0.圆C外有一动点P,点P到圆C的切线长等于它到原点O的距离,
(1)求点P的轨迹方程.
(2)当点P到圆C的切线长最小时,切点为M,求∠MPC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C:x2+y2-2x-2y+1=0,直线l与⊙C相切且分别交x轴、y轴正向于A、B两点,O为坐标原点,且|OA|=a,|OB|=b(a>2,b>2).
(Ⅰ)求线段AB中点的轨迹方程;
(Ⅱ)求△ABC面积的极小值.

查看答案和解析>>

同步练习册答案