分析 设底面圆的半径为r,侧面展开扇形的半径为R,根据圆锥侧面展开图的弧长=底面周长即可求R=4r,进而可求圆的面积及扇形的面积,即可计算得解.
解答 解:设底面圆的半径为r,侧面展开扇形的半径为R,由于展开扇形的圆心角为90°.
由题意可得:l底面周长=2πr=$\frac{π}{2}$R,解得:R=4r,
由题意得S底面面积=πr2,
S圆锥的侧面积=$\frac{1}{2}×$2πr×R=πr×4r=4πr2,
可得:S圆锥的侧面积:S底面面积=4πr2:πr2=4:1.
故答案为:4:1.
点评 本题通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{5π}{12}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}}}{3}π$ | B. | $3\sqrt{3}π$ | C. | $\frac{{8\sqrt{2}}}{3}π$ | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com