| A. | $\frac{π}{12}$ | B. | $\frac{5π}{12}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
分析 利用函数y=Asin(ωx+φ)的图象的对称性,得出结论.
解答 解:∵函数$f(x)=sin(ωx+\frac{π}{6})(ω>0)$图象的两条相邻的对称轴之间的距离为$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{2}$,∴ω=2,
∴f(x)=sin(2x+$\frac{π}{6}$).
令2x+$\frac{π}{6}$=kπ,k∈Z,求得x=$\frac{1}{2}$kπ-$\frac{π}{12}$,故该函数的图象的对称中心为( $\frac{1}{2}$kπ-$\frac{π}{12}$,0 ),k∈Z.
根据该函数图象关于点(x0,0)成中心对称,结合${x_0}∈[0,\frac{π}{2}]$,则x0=$\frac{5π}{12}$,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1.5 | B. | 2 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 7 | C. | $\frac{7}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com