精英家教网 > 高中数学 > 题目详情
19.若函数$f(x)=sin(ωx+\frac{π}{6})(ω>0)$图象的两条相邻的对称轴之间的距离为$\frac{π}{2}$,且该函数图象关于点(x0,0)成中心对称,${x_0}∈[0,\frac{π}{2}]$,则x0=(  )
A.$\frac{π}{12}$B.$\frac{5π}{12}$C.$\frac{π}{6}$D.$\frac{π}{4}$

分析 利用函数y=Asin(ωx+φ)的图象的对称性,得出结论.

解答 解:∵函数$f(x)=sin(ωx+\frac{π}{6})(ω>0)$图象的两条相邻的对称轴之间的距离为$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{2}$,∴ω=2,
∴f(x)=sin(2x+$\frac{π}{6}$).
令2x+$\frac{π}{6}$=kπ,k∈Z,求得x=$\frac{1}{2}$kπ-$\frac{π}{12}$,故该函数的图象的对称中心为( $\frac{1}{2}$kπ-$\frac{π}{12}$,0 ),k∈Z.
根据该函数图象关于点(x0,0)成中心对称,结合${x_0}∈[0,\frac{π}{2}]$,则x0=$\frac{5π}{12}$,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设实数x,y满足$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{y≥x}\end{array}\right.$,则x+2y的最小值为(  )
A.1.5B.2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α,β是两个平面,m,n是两条直线,有下列四个命题:
(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.
(2)如果m⊥α,n∥α,那么m⊥n.
(3)如果α∥β,m?α,那么m∥β.
其中正确命题的个数(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆的方程为(x-1)2+(y-1)2=9,P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是6$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l1:(a+2)x+3y=5与直线l2:(a-1)x+2y=6平行,则a等于(  )
A.-1B.7C.$\frac{7}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,x),若$\overrightarrow{a}$与$\overrightarrow{b}$平行,则x=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a∈R,p:关于x的方程x2-2x+a=0有两个不等实根;q:方程$\frac{{x}^{2}}{a-3}+\frac{{y}^{2}}{a+1}=1$表示双曲线.若p∨q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若圆锥的侧面展开图是圆心角为90°的扇形,则这个圆锥的侧面积与底面积的比是4:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案