精英家教网 > 高中数学 > 题目详情
19、设函数f(x)对任意x、y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0.
(1)证明:f(x)为奇函数;     
(2)证明:f(x)在R上为减函数.
分析:(1)根据函数奇偶性定义进行判定,该函数是抽象函数,故可利用赋值法进行,令x=y=0求出f(0)=0,令y=-x,即可得到结论;
(2)根据题意先证明单调性,用单调性定义,先设设x1,x2是 (-∞,+∞)上的任意两个实数,且x1<x2,f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)再由x>0时,f(x)<0来判断符号,从而得到函数的单调性.
解答:证明:(1)由已知f(x+y)=f(x)+f(y)  
令x=y=0得  f(0)=0
令y=-x,得f(x-x)=f(x)+f(-x)
∴f(x)+f(-x)=0∴f(x)为奇函数.
(2)设x1,x2是 (-∞,+∞)上的任意两个实数,且x1<x2
∵x2-x1>0,f(x2-x1)<0
由(1)知f(x)为奇函数
∴f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0
∴f(x2)<f(x1)∴f(x)在R上为减函数
点评:本题考查的是抽象函数,涉及到其单调性,解决这类问题关键是利用好条件,将问题转化到函数性质的定义上去应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)证明f(x)为奇函数.
(2)证明f(x)在R上是减函数.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x>0时,f(x)<0,且f(1)=2,
①求f(x)在[-3,3]上的最大值和最小值.
②解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意x∈R,都有f(x+3)=-
1
f(x)
,且当x∈(-3,-2)时,f(x)=5x,则f(201.2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2
(1)求证:f(x)是奇函数;
(2)试问:在-n≤x≤n时(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
1
2
f(bx2)-f(x)≥
1
2
f(b2x)-f(b),(b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.
(1)求证f(x)是奇函数;
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

同步练习册答案