精英家教网 > 高中数学 > 题目详情
过抛物线的焦点作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是(  )
A.相离B.相切C.相交D.不确定
不妨设抛物线为标准抛物线:y2=2px (p>0 ),即抛物线位于Y轴的右侧,以X轴为对称轴.
设过焦点的弦为PQ,PQ的中点是M,M到准线的距离是d.
而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.
又M到准线的距离d是梯形的中位线,故有d=
|PF|+|QF|
2

由抛物线的定义可得:
|PF|+|QF|
2
=
|PQ|
2
=半径.
所以圆心M到准线的距离等于半径,
所以圆与准线是相切.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线与椭圆交于两点(不是椭圆的顶点).点在椭圆上,且,直线轴、轴分别交于两点.
(i)设直线的斜率分别为,证明存在常数使得,并求出的值;
(ii)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线y2=8x的焦点为F,过F,的直线交抛物线于A(x1,y1),B(x2,y2),则y1y2=(  )
A.8B.16C.-8D.-16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=(  )
A.2:
5
B.1:2C.1:
5
D.1:3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x上的一点M到焦点的距离是5,且点M在第一象限,则M的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F是抛物线y=x2的焦点,M、N是该抛物线上的两点,|MF|+|NF|=3,则线段MN的中点到x轴的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)焦点的直线交抛物线于A、B两点,则|AB|的最小值为(  )
A.
p
2
B.pC.2pD.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,抛物线的焦点F在AB上,AB的倾斜角为60°,|BF|=|CF|=4,则直线AC的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某隧道横截面由抛物线及矩形的三边组成,尺寸如图,某卡车空车时可以通过该隧道,现载一集装箱,箱宽3米,车与箱共高4.5米,问此车能否通过此隧道?请说明理由.

查看答案和解析>>

同步练习册答案