分析 利用f(12)=2,求出c,再利用条件求出当1≤x≤2时,函数f(x)的解析式.
解答 解:∵当2≤x≤4时,f(x)=1-(x-3)2,
∴f(3)=1,
∵f(2x)=cf(x),
∴f(12)=cf(6)=c2f(3)=c2=2,
∵c为正常数,
∴c=$\sqrt{2}$.
当2≤x≤4时,f(x)=1-(x-3)2
当1≤x≤2时,2≤2x≤4,
则f(x)=$\frac{\sqrt{2}}{2}$f(2x)=$\frac{\sqrt{2}}{2}$[1-(2x-3)2].
故答案为:f(x)=$\frac{\sqrt{2}}{2}$[1-(2x-3)2].
点评 本题考查求函数的解析式,考查学生的计算能力,正确运用条件是关键.
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{2}$ | B. | 3$\sqrt{5}$ | C. | 6 | D. | 没有最大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | 5 | C. | -3 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com