精英家教网 > 高中数学 > 题目详情
在棱长为的正方体中,分别为的中点.

(1)求直线与平面所 成 角的大小;
(2)求二面角的大小.
(1)  (2)

试题分析:(1)解法一:建立坐标系
平面的一个法向量为  
因为
可知直线的一个方向向量为
设直线与平面成角为所成角为,则
   
解法二:平面,即在平面内的射影,
为直线与平面所成角,
中, ,        
(2)解法一:建立坐标系如图.平面的一个法向量为
设平面的一个法向量为,因为
所以,令,则
 
由图知二面角为锐二面角,故其大小为
解法二:过作平面的垂线,垂足为即为所求
,过的垂线设垂足为
   在
所以 二面角的大小为. 
点评:解决的关键是利用角的定义作图来结合几何中的性质定理和判定定理来得到,解三角形得到,或者建立空间直角坐标系,运用向量法来求解。属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,的中点.
          
(1)求证:∥平面
(2)设垂直于,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为

(1)求证:平面ABCD丄平面ADE;
(2)求四面体BADE的体积;
(3)试判断直线OB是否与平面CDE垂直,并请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求证:AD⊥BC;
(2)求二面角B—AC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,底面,点的中点.

(1)求证:侧面平面
(2)若异面直线所成的角为,且
求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科)(本小题满分12分)长方体中,是底面对角线的交点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面
(Ⅲ) 求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且

(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是边长为2的正方形,,且中点.

(Ⅰ)求证:平面;    
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在点,使得点到平
的距离为?若存在,确定点的位置;
若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于两条不相交的空间直线,必定存在平面,使得 (     )
A.B.C.D.

查看答案和解析>>

同步练习册答案