精英家教网 > 高中数学 > 题目详情
一次函数f(x)=mx+n与指数型函数g(x)=ax+b(a>0,a≠1)的图象交于两点A(0,1),B(1,2),解答下列各题:
(1)求一次函数f(x)和指数型函数g(x)的表达式;
(2)作出这两个函数的图象;
(3)填空:当x∈
[0,1]
[0,1]
时,f(x)≥g(x);当x∈
(-∞,0)∪(1,+∞)
(-∞,0)∪(1,+∞)
时,f(x)<g(x).
分析:(1)把点A、B的坐标代入函数解析式,得方程组,解方程组即可
(2)根据函数解析式和函数的性质,做出函数图象
(3)由条件和(2)可得答案
解答:解:(1)因为两个函数的图象交于两点A(0,1),B(1,2)
所以有
m×0+n=1
m×1+n=2
a0+b=1
a+b=2

解得m=n=1,a=2,b=0所以两个函数的表达式为f(x)=x+1,g(x)=2x
(2)如图所示,为所画函数图象

(3)由图象知,当x∈[0,1]时,f(x)≥g(x);当x∈(-∞,0)∪(1,+∞)时,f(x)<g(x)
故答案为:[0,1];(-∞,0)∪(1,+∞)
点评:本题考查用待定系数法求函数解析式,及函数的图象和性质.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

28、(1)一次函数f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,则对于任意x∈(m,n)都有f(x)>0,试证明之;
(2)试用上面结论证明下面的命题:若a,b,c∈R且|a|<1,|b|<1,|c|<1,则ab+bc+ca>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x)是增函数且满足f(f(x))=4x-3.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若不等式f(x)<m对于一切x∈[-2,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=
k2
+f(x)恒成立.
(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;
(2)证明函数f(x)=log2x属于集合M,并找出一个常数k;
(3)已知函数f(x)=logax( a>1)与y=x的图象有公共点,证明f(x)=logax∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x)=(m2-1)x+m2-3m+2,若f(x)是减函数,且f(1)=0.
(1)求m的值;
(2)若f(x+1)≥x2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5.
(Ⅰ)求f(x);
(Ⅱ)若g(x)在(1,+∞)单调递增,求实数m的取值范围;
(Ⅲ)当x∈[-1,3]时,g(x)有最大值13,求实数m的值.

查看答案和解析>>

同步练习册答案