精英家教网 > 高中数学 > 题目详情
(2013•宁波二模)设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则(  )
分析:构造函数g(x)=
f(x)
ex
,利用导数可判断g(x)的单调性,由单调性可得g(ln2)与g(ln3)的大小关系,整理即可得到答案.
解答:解:令g(x)=
f(x)
ex
,则g′(x)=
f′(x)•ex-f(x)•ex
e2x
=
f′(x)-f(x)
ex

因为对任意x∈R都有f'(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又ln2<ln3,所以g(ln2)<g(ln3),即
f(ln2)
eln2
f(ln3)
eln3

所以
f(ln2)
2
f(ln3)
3
,即3f(ln2)<2f(ln3),
故选C.
点评:本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波二模)设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知函数f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)当a=-
1
4
时,求函数y=f(x)的单调区间;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组
x≥1
y≤x-1
所表示的区域内,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)如图是某学校抽取的n个学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第3个小组的频数为18,则的值n是
48
48

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知两非零向量
a
b
,则“
a
b
=|
a
||
b
|”是“
a
b
共线”的(  )

查看答案和解析>>

同步练习册答案