精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为2的正方体ABCDA1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQλBB1(λ≠0)

1)若λ,求APAQ所成角的余弦值;

2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.

【答案】1.2λ.

【解析】

1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.

2)由BQλBB1,表示(202λ) ,从而得到平面APQ的一个法向量(2λ2λ,-2),再根据直线AA1与平面APQ所成角为45°,由|cos|求解.

1)以为正交基底,建立如图所示空间直角坐标系Axyz.

因为(122)(201)

所以cos〉=.

所以APAQ所成角的余弦值为.

2 由题意可知,(002)(202λ)

设平面APQ的法向量为(x,y,z)

z=-2,则x2λy2λ.

所以(2λ2λ,-2)

又因为直线AA1与平面APQ所成角为45°

所以|cos|

可得5λ24λ0

又因为λ≠0,所以λ

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)若,当三棱锥的体积最大时,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的零点,以及曲线处的切线方程;

2)设方程)有两个实数根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADBCABACAD3PABC4.

1)求异面直线PBCD所成角的余弦值;

2)求平面PAD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1底面四边形ABCD为菱形A1AAB2,∠ABCEF分别是BCA1C的中点

(1)求异面直线EFAD所成角的余弦值;

(2)点M在线段A1D上, .若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足是数列的前项和().

(1)设数列是首项和公比都为的等比数列,且数列也是等比数列,求的值;

(2)设,若恒成立,求的取值范围;

(3)设),若存在整数,且,使得成立,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为12…,7的球槽内.例如小球要掉入3号球槽,则在前5次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以的概率向左滚下,或在前5次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以的概率向右滚下.

(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;

(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入X号球槽得到的奖金为元,其中.

i)求X的分布列:

ii)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是(

A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐

B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐

C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐

D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐

查看答案和解析>>

同步练习册答案