精英家教网 > 高中数学 > 题目详情
已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为3.
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点,当时,求的取值范围.
(1);(2).

试题分析:本题考查椭圆的标准方程和几何性质、交点问题、直线的斜率、韦达定理等基础知识,考查数形结合思想,考查运算求解能力、综合分析和解决问题的能力.第一问,根据条件,设椭圆的方程,写出,得焦点,代入点到直线的距离公式,得,得到椭圆的方程;第二问,直线方程与曲线方程联立,消,得关于的一元二次方程,据条件有两个不同实根,所以,解得,利用韦达定理,求得中点的横纵坐标,求,由,得,整理得,最后解方程组得.
试题解析:(1)依题意可设椭圆方程为,          .2分
则右焦点的坐标为,                .3分
由题意得,解得
故所求椭圆的标准方程为.                .5分
(2)设,其中为弦的中点,
,得        .7分
因为直线与椭圆相交于不同的两点,所以
   ①,                                .8分
,所以
从而 ,                            .9分
所以,                       .10分
,所以
因而,即  ②,          .11分
把②式代入①式得,解得,           .12分
由②式得,解得,                .13分
综上所述,求得的取值范围为.             .14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆两点,且成等差数列,点M(1,1),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的弦被点平分,则此弦所在直线的斜率为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两点A(–2,0),B(0,2),点P是椭圆=1上任意一点,则点P到直线AB距离的最大值是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知B、C是两个定点,∣BC∣=6,且△ABC的周长等于16,则顶点A的轨迹方程为                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对k∈R,直线y-kx-1=0与椭圆恒有公共点,则实数m的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长是,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,P为椭圆上,则此椭圆离心率的取值范围是                                               (    )
A.B.C.D.

查看答案和解析>>

同步练习册答案