精英家教网 > 高中数学 > 题目详情
14.设随机变量X服从正态分布N(0,1),若P(x>1)=0.4,则P(-1<x<0)=0.1.

分析 画出正态分布N(0,1)的密度函数的图象,由图象的对称性可得结果.

解答 解:画出正态分布N(0,1)的密度函数的图象如下图:
由图象的对称性可得,若P(ξ>1)=0.4,则P(ξ<-1)=0.4,
∴则P(-1<ξ<1)=1-2×0.4=0.2,
P(-1<ξ<0)=0.1.
故答案为:0.1

点评 本题考查正态分布,学习正态分布时需注意:从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知集合P={x|x2-2x-3=0},S={x|ax+2=0}
(1)若-$\frac{1}{2}$∈S,求a的值;
(2)若∅?S,求a的取值范围;
(3)S⊆P,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x,y∈R,不等式组$\left\{\begin{array}{l}{y≥|x-1|}\\{y≤-|x|+2}\\{x≥0}\end{array}\right.$,画出不等式组表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{m}$∥$\overrightarrow{n}$,$\overrightarrow{n}$∥$\overrightarrow{k}$,则向量$\overrightarrow{m}$与向量$\overrightarrow{k}$(  )
A.共线B.不共线C.共线且同向D.不一定共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了得到函数y=sin(2x+$\frac{π}{4}$)的图象,只需将函数y=cos(2x+$\frac{π}{3}$)的图象(  )
A.向左平移$\frac{7}{24}$π个单位B.向左平移$\frac{7}{12}$π个单位
C.向右平移$\frac{7}{24}$π个单位D.向右平移$\frac{7}{12}$π个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.集合A={y|y=x2-1,x∈R},B={y|y=-2x2+2,x∈R},C={(x,y)|y=x2-1,x∈R},D={(x,y)|y=-2x2+2,x∈R},求A∩B,C∩D,A∩D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设集合A={x|x2-4x+3=0},B={x|ax-2=0}且A∪B=A,则实数a的全体值构成的集合为{0,2,$\frac{2}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若扇形的圆心角α=-216°,弧长l=7π,则半径r=$\frac{35}{6}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线M:y2=2px(p>0),其焦点F到直线l:x-y-2t=0的距离为$\frac{3\sqrt{2}}{2}$.
(1)若t=1,求抛物线M的方程;
(2)已知t<0,直线l与抛物线M相交于A,B两点,直线PQ与抛物线M相交于P,Q两点,且满足$\overrightarrow{PQ}•\overrightarrow{AB}$=0,$\overrightarrow{BP}•\overrightarrow{BA}$=$\overrightarrow{AP}•\overrightarrow{AB}$=32,若A,P,B,Q四点在同一个圆Γ上,求圆Γ上的动点到焦点F最小距离.

查看答案和解析>>

同步练习册答案