精英家教网 > 高中数学 > 题目详情

过双曲线数学公式的左焦点F(-c,0)(c>0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P.若数学公式,则双曲线的离心率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:先设双曲线的右焦点为F',则F'的坐标为(c,0),因为抛物线为y2=4cx,所以F'为抛物线的焦点,O为FF'的中点,又可得E为FP的中点,所以OE为△PFF'的中位线,得到|PF|=2b,再设P(x,y) 过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.
解答:设双曲线的右焦点为F',则F'的坐标为(c,0)
∵抛物线为y2=4cx,
∴F'为抛物线的焦点,O为FF'的中点,

∴E为FP的中点
∴OE为△PFF'的中位线,
∵O为FF'的中点
∴OE∥PF'
∵|OE|=a
∴|PF'|=2a
∵PF切圆O于E
∴OE⊥PF
∴PF'⊥PF,
∵|FF'|=2c
∴|PF|=2b
设P(x,y),则x+c=2a,∴x=2a-c
过点F作x轴的垂线,则点P到该垂线的距离为2a
由勾股定理 y2+4a2=4b2
∴4c(2a-c)+4a2=4(c2-a2
∴e2-e-1=0
∵e>1
∴e=
故选B.
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•三明模拟)已知双曲线Γ:
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率e=2,过双曲线Γ的左焦点F作⊙O:x2+y2=a2的两条切线,切点分别为A、B,则∠AFB的大小等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过双曲线的左焦点F,且与以实轴为直径的圆相切,若直线l与双曲线的一条渐近线恰好平行,则该双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三第七次阶段复习达标检测理科数学试卷(解析版) 题型:填空题

过双曲线的左焦点F作⊙O: 的两条切线,记切点为A,B,双曲线左顶点为C,若,则双曲线的离心率为____________.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年贵州省五校高三第四次联考数学理卷 题型:选择题

过双曲线的左焦点F的直线与双曲线的左支交于AB两点,且以线段AB为直径的圆被双曲线C的左准线截得的劣弧的弧度数为,那么双曲线的离心率为

(A)       (B)        (C)2      (D)

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年贵州省五校高三第四次联考数学理卷 题型:选择题

过双曲线的左焦点F的直线与双曲线的左支交于AB两点,且以线段AB为直径的圆被双曲线C的左准线截得的劣弧的弧度数为,那么双曲线的离心率为

(A)       (B)        (C)2      (D)

 

查看答案和解析>>

同步练习册答案