精英家教网 > 高中数学 > 题目详情

已知函数,f '(x)为f(x)的导函数,若f '(x)是偶函数且f '(1)=0.

⑴求函数的解析式;

⑵若对于区间上任意两个自变量的值,都有,求实数的最小值;

⑶若过点,可作曲线的三条切线,求实数的取值范围.

 

【答案】

;⑵的最小值为;⑶.

【解析】

试题分析:⑴,由是偶函数得.又,所以,由此可得解析式;

⑵对于区间上任意两个自变量的值,都有,则只需即可.所以接下来就利用导数求在区间上的最大值与最小值,然后代入解不等式即可得的最小值.⑶易知点不在曲线上.凡是过某点的切线(不是在某点处的切线)的问题,都要设出切点坐标然后列方程组..

设切点为.则.又,∴切线的斜率为

由此得,即.下面就考查这个方程的解的个数.

因为过点,可作曲线的三条切线,所以方程有三个不同的实数解.即函数有三个不同的零点.接下来就利用导数结合图象研究这个函数的零点的个数.

试题解析:⑴∵,1分

是偶函数得.又,所以3分

.4分

⑵令,即,解得.5分

 

+

 

极大值

极小值

∴当时,.6分

则对于区间上任意两个自变量的值,都有

,所以

所以的最小值为.8分

⑶∵点不在曲线上,

∴设切点为.则

,∴切线的斜率为

,即.10分

因为过点,可作曲线的三条切线,

所以方程有三个不同的实数解.

即函数有三个不同的零点.11分

,解得

+

+

极大值

极小值

 即 解得.12分

考点:1、导数的应用;2、不等关系;3、函数的零点.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、已知函数y=f-1(x)是函数f(x)=2x-1(x≥1)的反函数,则f-1(x)=
1+log2x(x≥1)
要求写明自变量的取值范围).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f-1(x)是y=f(x)的反函数,若函数f(x)=log2(x+4),则f-1(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•武汉模拟)已知函数y=f-1(x)的图象过(1,0),则y=f(
1
2
x-1)
的反函数的图象一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知函数y=f-1(x)是函数f(x)=2x-1(x≥1)的反函数,则f-1(x)=
1+log2x(x≥1)
1+log2x(x≥1)

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数y=f-1(x)是函数f(x)=2x-1(x≥1)的反函数,则f-1(x)=    要求写明自变量的取值范围).

查看答案和解析>>

同步练习册答案