精英家教网 > 高中数学 > 题目详情
在非直角△ABC中,向量与向量的夹角为( )
A.锐角
B.直角
C.钝角
D.0
【答案】分析:计算向量与向量的数量积,得到数量积等于0,所以两向量的夹角是直角.
解答:解:∵=
=
=-||+||=0
∴向量与向量垂直,
∴向量与向量的夹角为直角.
故选B
点评:本题主要考查向量的数量积的计算,计算量较大,做题时要有耐心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C(c,0),点P(0,p)在线段OA上(异于端点),设a,b,c,p均为非零实数,直线BP,CP分别交AC,AB于点E,F,一同学已正确算得直线OF的方程:(
1
c
-
1
b
)x+(
1
p
-
1
a
)y=0
,则OE的方程为:
1
b
-
1
c
)x+(
1
p
-
1
a
)y=0
1
b
-
1
c
)x+(
1
p
-
1
a
)y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0),点P(0,p)在线段AO 上(异于端点),设a,b,c,p 均为非零实数,直线BP,CP 分别交AC,AB 于点E,F,一同学已正确算得OE的方程:(
1
b
-
1
c
)x+(
1
p
-
1
a
)y=0
,请你求OF的方程:
(
1
b
-
1
c
)x-(
1
p
-
1
a
)y=0
(
1
b
-
1
c
)x-(
1
p
-
1
a
)y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在非直角△ABC中,向量
AB
|
AB
|cosB
+
AC
|
AC
|cosC
与向量
BC
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源:同步题 题型:单选题

在非钝角△ABC中,已知3b=2asinB,且cosB=cosC,则△ABC的形状是
[     ]
A.等边三角形
B.等腰三角形
C.直角三角形
D.等腰直角三角形

查看答案和解析>>

同步练习册答案