精英家教网 > 高中数学 > 题目详情
5.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为(  )
A.3B.3$\sqrt{2}$C.9D.9$\sqrt{2}$

分析 由已知中的三视图,可得:该几何合格是一个以俯视图为底面的四棱锥,计算底面面积和高,代入椎体体积公式,可得答案.

解答 解:由已知中的三视图,可得:该几何合格是一个以俯视图为底面的四棱锥,
其底面面积S=$\frac{1}{2}$(2+4)×1=3,
高h=3,
故体积V=$\frac{1}{3}Sh$=3,
故选:A

点评 本题考查的知识点是棱锥的体积和表面积,空间几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列说法中正确的是(  )
A.经过两条平行直线,有且只有一个平面
B.如果两条直线平行于同一个平面,那么这两条直线平行
C.三点确定唯一一个平面
D.如果一个平面内不共线的三个点到另一平面的距离相等,则这两个平面相互平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{2}$|$\overrightarrow{a}-\overrightarrow{b}$|,则$\overrightarrow{a}$在$\overrightarrow{a}+\overrightarrow{b}$上的投影为(  )
A.$\frac{1}{3}$B.-$\frac{2\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设F1为椭圆C1:$\frac{(x-1)^{2}}{16}+\frac{{y}^{2}}{12}$=1的左焦点,M是C1上任意一点,P是线段F1M的中点;
(])求动点P的轨迹C的方程;
(2)若直线y=kx+2交轨迹C于A,B两点,AB的中垂线交y轴于点Q(0,t),求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},且函数$y=a{x^3}+m{x^2}+x+\frac{c}{2}$在区间$({\frac{1}{2},1})$上不是单调函数,则实数m的取值范围是(  )
A.$(-2,-\sqrt{3})$B.$[{-3,-\sqrt{3}}]$C.$({-∞,-2})∪({\sqrt{3},+∞})$D.$({-∞,-2})∪({-\sqrt{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个几何体的三视图如图所示,则该几何体的体积为4$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线$l:ρsin({θ-\frac{π}{4}})=\frac{{\sqrt{2}}}{2}({ρ≥0,0≤θ≤2π})$.
(1)求圆O与直线l的直角坐标方程;
(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$M:\frac{x^2}{2}+{y^2}=1$左、右焦点分别为F1、F2,点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点;
(1)求△ABF2的周长;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:$\frac{1}{k_1}-\frac{3}{k_2}=2$;
(3)问直线l是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$|\overrightarrow a|=2$,$|\overrightarrow b|=1$,且$\overrightarrow a$与$\overrightarrow b$夹角为60°,则$|2\overrightarrow a-\overrightarrow b|$=$\sqrt{13}$.

查看答案和解析>>

同步练习册答案