解:(Ⅰ) ∵ PA = PD = 1 ,PD = 2 ,
∴ PA
2 + AD
2 = PD
2, 即:PA ⊥ AD
又PA ⊥CD , AD , CD 相交于点D, ∴ PA ⊥平面ABCD
(Ⅱ)过E作EG∥PA 交AD于G,从而EG ⊥平面ABCD,
且AG = 2GD , EG =

PA =

,
连接BD交AC于O, 过G作GH∥OD ,交AC于H,连接EH.
∵GH ⊥AC , ∴EH ⊥AC ,
∴∠ EHG为二面角D-AC-E的平面角.
∴tan∠EHG =

=

.
∴二面角D-AC-E的平面角的余弦值为-

(Ⅲ)以AB , AD , PA为x轴、y轴、z轴建立空间直角坐标系.
则A(0 ,0, 0),B(1,0,0) ,C(1,1,0),P(0,0,1),E(0 ,

),

= (1,1,0),

= (0 ,

)
设平面AEC的法向量

= (x, y,z) , 则

,
即:

, 令y = 1 , 则

= (- 1,1, - 2 )
假设侧棱PC上存在一点F, 且

=


, (0 ≤

≤ 1),
使得:BF∥平面AEC, 则

·

= 0.
又因为:

=

+

= (0 ,1,0)+ (-

,-

,

)= (-

,1-

,

),
∴

·

=

+ 1-

- 2

= 0 ,
∴

=

,
所以存在PC的中点F, 使得BF∥平面AEC.
