精英家教网 > 高中数学 > 题目详情
9.已知数列{an}中,a1=1,a2=3且an+2=3an+1-2an,n∈N,对数列{an}有下列命题:①数列{an}是等差数列;②数列{an+1-an}是等比数列;③当n≥2时,an都是质数;④$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<2,n∈N,则其中正确的命题有(  )
A.①②③④B.①②C.③④D.②④

分析 通过对an+2=3an+1-2an变形可知数列{an+1-an}是以首项、公比均为2的等比数列,进而可知an-an-1=2n-1、an-1-an-2=2n-2、…、a2-a1=21,叠加可知an=2n-1,进而可知①②③中只有②正确,通过放缩可知$\frac{1}{{a}_{n}}$<$\frac{1}{{2}^{n-1}}$(n≥2),利用等比数列的求和公式可知④正确.

解答 解:∵an+2=3an+1-2an
∴an+2-an+1=2(an+1-an),
∴数列{an+1-an}是以a2-a1为首项、2为公比的等比数列,
又∵a2-a1=3-1=2,
∴an+1-an=2n
an-an-1=2n-1
an-1-an-2=2n-2

a2-a1=21
累加得:an-a1=21+22+…+2n-1=$\frac{2(1-{2}^{n-1})}{1-2}$=2n-2,
∴an=2n-2+a1=2n-1.
显然①②③中,只有②正确,
又∵$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n}-1}$<$\frac{1}{{2}^{n-1}}$(n≥2),
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$
=$\frac{(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$
<2,
故④正确;
综上所述,①③错误、②④正确,
故选:D.

点评 本题考查说了的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的射影,给出下列结论:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC;⑤平面PBC⊥平面PAC.其中正确命题的序号是①②③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{y≤a}\end{array}\right.$,且z=2x+3y的最大值是5,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等比数列{an}中,a1a4=32,a6=64.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设Sn是等差数列{an}的前n项和,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,则$\frac{S_9}{S_6}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.曲线y=x+$\frac{1}{x}$在点(1,2)处的切线方程为y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若2+4+6+…+2n>72,则正整数n的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=asinx+(2-b)cosx(a>0,b>0)关于直线x=$\frac{π}{4}$对称,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是(-∞,2.5].

查看答案和解析>>

同步练习册答案