精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,函数f(x)=x2﹣2ax+5.
(1)若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若不等式x|f(x)﹣x2|≤1对x∈[ ]恒成立,求实数a的取值范围.

【答案】
(1)解:∵f(x)的图象开口向上,对称轴为x=a>1,

∴f(x)在[1,a]上单调递减,

∴f(1)=a,即6﹣2a=a,解得a=2.


(2)解:不等式x|f(x)﹣x2|≤1对x∈[ ]恒成立,

即x|2ax﹣5|≤1对x∈[ ]恒成立,

故a≥ 且a≤ 在x∈[ ]恒成立,

令g(x)= ,x∈[ ],则g′(x)=﹣

令g′(x)>0,解得: ≤x< ,令g′(x)<0,解得: <x≤

故g(x)在[ )递增,在( ]递减,

故g(x)max=g( )=

令h(x)= ,x∈[ ],h′(x)= <0,

故h(x)在x∈[ ]递减,

h(x)min=h( )=7,

综上: ≤a≤7.


【解析】(1)判断出f(x)的单调性,利用单调性列方程解出;(2)问题转化为a≥ 且a≤ 在x∈[ ]恒成立,根据函数的单调性求出a的范围即可.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数y=sin(2x﹣ )的图象先向左平移 个单位,再将图象上各点的横坐标变为原来的 倍(纵坐标不变),那么所得图象的解析式为y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知t为实数,函数f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函数y=g(ax+1)﹣kx是偶函数,求实数k的值;
(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;
(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为 ,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:点M(1,3)不在圆(x+m)2+(y﹣m)2=16的内部,命题q:“曲线 表示焦点在x轴上的椭圆”,命题s:“曲线 表示双曲线”.
(1)若“p且q”是真命题,求m的取值范围;
(2)若q是s的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)的图象关于点(﹣ ,0)成中心对称,且对任意的实数x都有 ,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)++f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的长方体中,AB=2 ,AD= = ,E、F分别为 的中点,则异面直线DE、BF所成角的大小为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知﹣1,a1 , a2 , 8成等差数列,﹣1,b1 , b2 , b3 , ﹣4成等比数列,那么 的值为( )
A.﹣5
B.5
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题类A)以椭圆 +y2=1(a>1)短轴端点A(0,1)为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.

查看答案和解析>>

同步练习册答案