精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a2=a+2(a为常数),Sn是{an}的前n项和,且Snnanne的等差中项,

       (1)求a1a3;

       (2)猜想an的表达式,并用数学归纳法加以证明.

      

解析:(1)∵Snnanna的等差中项,?

       ∴2Sn=nan+na.①?

       ∴2a1=a1+a.∴a1=a.?

       又n≥2时,2Sn-1=(n-1)an-1+(n-1)a,②?

       ①-②得2an=nan-(n-1)an-1+a,?

       ∴an=(n≥2).?

       又a2=a+2,∴a3==2a+4-a=a+4.??

       (2)猜想an=a+2(n-1).?

       证明:(ⅰ)n=1时,显然成立.?

       (ⅱ)假设n=k(k∈N*)时成立,即ak=a+2(k-1),?

       那么n=k+1时,ak+1===a+2k=a+2[(k+1)-1],?

       故n=k+1时也成立,由(ⅰ)(ⅱ)知,对n∈N*均有an=a+2(n-1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案