精英家教网 > 高中数学 > 题目详情
17.解方程:|x-1|+|x-5|=4.

分析 由条件利用绝对值的意义,求得方程|x-1|+|x-5|=4的解.

解答 解:|x-1|+|x-5|表示数轴上的x对应点到1、5对应点的距离之和,它的最小值为4,
当且仅当1≤x≤5时,|x-1|+|x-5|取得最小值为4,
故方程:|x-1|+|x-5|=4的解为[1,5].

点评 本题主要考查绝对值的意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-$\frac{a}{x}$+$\frac{a}{2}$在(1,+∞)上是增函数.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,1-x),若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则x等于(  )
A.4B.-3C.2D.-3或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线ax+2y-2=0与2x-y+c=0垂直且相交于点(1,m),则a+c=(  )
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数y=$\frac{lg(x+1)}{x-1}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在极坐标中,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$(t为参数)
(1)写出直线l的普通方程和曲线C的普通方程.
(2)试判断直线l与曲线C的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin($\frac{x}{3}$-$\frac{π}{6}$),x∈R
(1)求f($\frac{5π}{4}$)的值;
(2)设x,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$.f(3β+2π)=$\frac{2}{5}$,求cos(α+β)和sin(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\sqrt{2{x}^{2}-mx+3}$,若函数f(x)的定义域为R,则m的取值范围是[-2$\sqrt{6}$,2$\sqrt{6}$].

查看答案和解析>>

同步练习册答案