精英家教网 > 高中数学 > 题目详情
如图,直四棱柱中,底面的菱形,,点在棱上,点是棱的中点.

(1)若的中点,求证:
(2)求出的长度,使得为直二面角.

(1)证明略
(2)
解:(1)

所以; …………………………5分
(2)设,连接
因为就是二面角的平面角,
所以,要使只需
所以,从而 ………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,正方形的边长为1,正方形所在平面与平面互相垂直,
的中点.
(1)求证:平面

(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体中,平面,
的中点。
(Ⅰ)求证:
(Ⅱ)设二面角的平面角为,求 。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=

求证:平面ACD⊥平面PAC;
求异面直线PC与BD所成角的余弦值;
设二面角A—PC—B的大小为,试求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知棱长为4的正方体中,为侧面的中心,为棱的中点,试计算
(1)
(2)求证
(3)求与面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,侧面为等边三角形,侧棱

(Ⅰ)求证:
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱的侧棱垂直于底面,分别是的中点.
(1)证明:
(2)证明:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱锥中,底面
,点,点分别是的中点.

(1) 求证:侧面⊥侧面;
(2) 求点到平面的距离;
(3) 求异面直线所成的角的余弦.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三个平面,若,且相交但不垂直,分别为内的直线,则(▲)              
A.B.C.D.

查看答案和解析>>

同步练习册答案