精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知棱长为4的正方体中,为侧面的中心,为棱的中点,试计算
(1)
(2)求证
(3)求与面所成角的余弦值.

(1)-4
(2)略
(3)
的方向为x轴,y轴,z轴方向建立空间直角坐标,O为坐标原点,的坐标分别为

(1)

(2)
   
从而
(3) 面法向量可取,设与面所成角


故所求角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本题满分12分)
已知长方体ABCD-中,棱AB=BC=3,=4,连结, 在上有点E,使得⊥平面EBD ,BE交于F.

(1)求ED与平面所成角的大小;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为一直角梯形,其中底面的中点.
(1)求证://平面
(2)若平面
①求异面直线所成角的余弦值;
②求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥的侧棱长为2,侧棱与底面所成角为600,则棱锥的体积为(     )
A  3                B  6                C  9               D  18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱中,底面的菱形,,点在棱上,点是棱的中点.

(1)若的中点,求证:
(2)求出的长度,使得为直二面角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分) 已知四棱锥的底面为直角梯形,底面,且的中点。
(Ⅰ)证明:面
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直平行六面体ABCD-A1B1C1D1的高为3,
底面是边长为4, 且∠BAD=60°的菱形,AC∩
BD=O,A1C1∩B1D1=O1,E是线段AO1上一点.
(Ⅰ)求点A到平面O1BC的距离;
(Ⅱ)当AE为何值时,二面角E-BC-D的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB="AD" =2,

(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

同步练习册答案