精英家教网 > 高中数学 > 题目详情
((本题满分12分)
已知长方体ABCD-中,棱AB=BC=3,=4,连结, 在上有点E,使得⊥平面EBD ,BE交于F.

(1)求ED与平面所成角的大小;
(2)求二面角E-BD-C的大小.

(1)
(2)
解析:(1)连结,由∥CD知D在平面内,由⊥平面EBD.
⊥EB 又∵ ⊥BE,  
∴ BE⊥平面,即得F为垂足.
  连结DF,则∠EDF为ED与平面所成的角.
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直三棱柱中, AB=1,,∠ABC=60.
(1)证明:
(2)求二面角AB的余弦值。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在四棱锥P—ABCD中,底面ABCD是一直角梯形,
与底面成30°角.
  
(1)若为垂足,求证:;
(2)求平面PAB与平面PCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱锥底面正方形的边长为4cm,高PO与斜高PE的夹角为,如图,求正四棱锥的表面积与体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知四棱锥中,平面,底面是直角梯形,的重心,的中点,上,且

(1)求证:
(2)当二面角的正切值为多少时,
平面
(3)在(2)的条件下,求直线与平面成角
的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知棱长为4的正方体中,为侧面的中心,为棱的中点,试计算
(1)
(2)求证
(3)求与面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)

如图4,正方体中,点E在棱CD上。
(1)求证:
(2)若E是CD中点,求与平面所成的角;
(3)设M在上,且,是否存在点E,使平面⊥平面,若存在,指出点E的位置,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


设地球是半径为R的球,地球上A、B两地都在北纬45°的纬线上,A在东经20°、B在东经110°的经线上,则A、B两地的球面距离是 (     )
A.      B.      C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,动点P在正方体ABCD—A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面交于M、N,设BP=x,MN=y,则函数的图象大致是

查看答案和解析>>

同步练习册答案