精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
在四棱锥P—ABCD中,底面ABCD是一直角梯形,
与底面成30°角.
  
(1)若为垂足,求证:;
(2)求平面PAB与平面PCD所成的锐二面角的余弦值.

(1)略
(2)

解法一:(1)

    …………4分
延长AB与DC相交于G点,连PG,则面PAB

与面PCD的交线为PG,易知CB⊥平面PAB,过B作

=

 
   

   
∴平面PAB与平面PCD所成的二面角的正切值为. ………14分
解法二:(1)如图建立空间直角坐标系,


        …………4分
(2)易知,
的法向量。

∴平面PAB与平面PCD所成锐二面角的余弦值为. …………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本题满分12分)
已知长方体ABCD-中,棱AB=BC=3,=4,连结, 在上有点E,使得⊥平面EBD ,BE交于F.

(1)求ED与平面所成角的大小;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、如图,已知四棱锥中,底面是直角梯形,平面. 
(1)求证:平面
(2)求证:平面
(3)若M是PC的中点,求三棱锥M—ACD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,棱锥的底面是矩形,
的中点.
(1)求证:;                                                                        
(2)求二面角的余弦值;
(3)设的中点,在棱上是否存在点
使?如果存在,请指出点的位置;
如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在棱长为
正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。

(Ⅰ)求证:BH//平面A1EFD1;
(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是
A.直线B.圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知球O的半径为2,两个平面分别截球面得到两个圆⊙O1与⊙O2,若
OO1=OO2=,∠O1OO2=60°,则⊙O1与⊙O2的公共弦长为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个几何体的三视图如图所示:其中,主视图中大三角形的边长是2的正三角形,俯视图为正六边形,那么该几何体的体积为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB="AD" =2,

(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

同步练习册答案