精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面为一直角梯形,其中底面的中点.
(1)求证://平面
(2)若平面
①求异面直线所成角的余弦值;
②求二面角的余弦值.
解:设,建立如图的空间坐标系,
.
(1),所以,  
平面平面.              
(2)平面,即
,即.

所以异面直线所成角的余弦值为;               
②平面和平面中,
所以平面的一个法向量为;平面的一个法向量为
,所以二面角的余弦值为.      
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱柱ADF—BCE中,侧棱底面,底面是等腰直角三角形,且MG分别是ABDF的中点.

(1)求证GA∥平面FMC;
(2)求直线DM与平面ABEF所成角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,
(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD。
(1)求直线FD与平面ABCD所成的角;
(2)求点D到平面BCF的距离;
(3)求二面角B—FC—D的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直三棱柱中, AB=1,,∠ABC=60.
(1)证明:
(2)求二面角AB的余弦值。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,正方形的边长为1,正方形所在平面与平面互相垂直,
的中点.
(1)求证:平面

(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题12 分)如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD为正方形,E、F分别为AB、PC的中点.
①求证:EF⊥平面PCD;
②求平面PCB与平面PCD的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,四棱锥中,底面为正方形,平面分别为的中点.

(1)求证:;
(2)求三棱锥的体积.                       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知棱长为4的正方体中,为侧面的中心,为棱的中点,试计算
(1)
(2)求证
(3)求与面所成角的余弦值.

查看答案和解析>>

同步练习册答案