精英家教网 > 高中数学 > 题目详情
(2013•哈尔滨一模)已知中心在原点的椭圆与双曲线有公共焦点,且左右焦点分别为F1F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1•e2的取值范围是(  )
分析:设椭圆与双曲线的半焦距为c,PF1=r1,PF2=r2.利用三角形中边之间的关系得出c的取值范围,再根据椭圆或双曲线的性质求出各自的离心率,最后依据c的范围即可求出e1•e2的取值范围是.
解答:解:设椭圆与双曲线的半焦距为c,PF1=r1,PF2=r2
由题意知r1=10,r2=2c,且r1>r2,2r2>r1
∴2c<10,2c+2c>10,
5
2
<c<5.⇒1<
25
c2
<4

e2=
2c
2a
=
2c
r1-r2
=
2c
10-2c
=
c
5-c

e1=
2c
2a
=
2c
r1+r2
=
2c
10+2c
=
c
5+c

e1e2=
c2
25-c2
=
1
25
c2
-1
1
3

故选C.
点评:本小题主要考查函数单调性的应用、椭圆的简单性质、双曲线的简单性质、不等式的性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD外接球表面积为
13
3
π
13
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-
x+1x-1
,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)已知函数①y=sinx+cosx,②y=2
2
sinxcosx
,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)选修4-5:不等式选讲
已知函数f(x)=log2(|x-1|+|x-5|-a)
(Ⅰ)当a=5时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•哈尔滨一模)双曲线
x2
a2
-
y2
b2
=1
的渐近线与圆x2+(y-2)2=1相切,则双曲线离心率为(  )

查看答案和解析>>

同步练习册答案