精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥,底面是等腰梯形,且中点,平面中点.

(1)证明:平面平面;(2)求点到平面的距离.

(1)详见解析;(2)

解析试题分析:(1)根据中位线可得,从而可证得∥平面。证四边形为平行四边形可得∥平面,从而可证得平面平面。(2)根据已知条件可得三棱锥的体积,根据体积转化发即可求得点到平面的距离。
试题解析:(1) 证明:由题意,=
∴四边形为平行四边形,所以.
又∵ ∴
平面平面 ∴∥平面  4分
同理,∥平面,又
∴平面∥平面.            6分
(2)设求点到平面的距离为.
因为V三棱锥A-PCD= V三棱锥P-ACD
.      12分
考点:1线线平行、线面平行;2点到面的距离。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)(2011•陕西)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.

(Ⅰ)证明:平面ADB⊥平面BDC;
(Ⅱ)设BD=1,求三棱锥D﹣ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中, ,  的中点,△是等腰三角形,的中点,上一点.

(1)若∥平面,求
(2)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,.把沿折起到的位置,使得点在平面上的正投影恰好落在线段上,如图2所示,点分别为棱的中点.

(1)求证:平面平面
(2)求证:平面
(3)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为
A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形所在的平面和平面互相垂直,等腰梯形中,=2,分别为的中点,为底面的重心.

(1)求证:平面平面
(2)求证: ∥平面
(3)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,都是以为斜边的等腰直角三角形,分别是的中点.

(1)证明:平面//平面;
(2)证明:
(3)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案