精英家教网 > 高中数学 > 题目详情

如图,矩形所在的平面和平面互相垂直,等腰梯形中,=2,分别为的中点,为底面的重心.

(1)求证:平面平面
(2)求证: ∥平面
(3)求多面体的体积.

(1)见解析;(2)见解析;(3).

解析试题分析:(1)利用矩形所在的平面和平面互相垂直,且
得到平面
应用余弦定理知,得到
⊥平面,得到平面平面
(2)平行关系的证明问题问题,要注意三角形中位线定理的应用,注意平行关系的传递性,以及线线关系、线面关系、面面关系的相互转化;                          8分
(3)将多面体的体积分成三棱锥
四棱锥的体积之和,分别加以计算.
试题解析:(1)矩形所在的平面和平面互相垂直,且
平面
平面,所以                      1分
,由余弦定理知
                                  2分
⊥平面,                                 3分
平面;∴平面平面;                     4分
(2)连结延长交,则的中点,又的中点,
,又∵平面,∴∥平面         5分
连结,则平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥,底面是等腰梯形,且中点,平面中点.

(1)证明:平面平面;(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为a的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点.

(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABCABBCDAC的中点,AA1AB=2,BC=3.

(1)求证:AB1∥平面BC1D
(2)求四棱锥BAA1C1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.

(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E所成的角为60°时,求三棱锥C1A1B1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.

(1)设的中点为,求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中, ,,求:

(1)异面直线所成角的大小;
(2)四棱锥的体积.

查看答案和解析>>

同步练习册答案