精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,E,F分别是AB,C1D1的中点,则A1B1与平面A1ECF所成角的正弦值为(  )
A、
3
3
B、
6
3
C、
1
3
D、
2
2
3
分析:由正方体的几何特征,易得EF⊥平面A1B1C,则∠B1A1C就是A1B1与平面A1ECF所成的角.然后解三角形,求A1B1与平面A1ECF所成角的正弦值.
解答:解:连接C1B,∵E、F分别为AB与C1D1的中点,
∴C1F=BE.又C1F∥BE,
∴C1FEB为平行四边形.∴C1B∥EF.而C1B⊥B1C,
∴EF⊥B1C.又四边形A1ECF是菱形,∴EF⊥A1C.∴EF⊥面A1B1C.
又EF?平面A1ECF,
∴平面A1B1C⊥平面A1ECF.∴B1在平面A1ECF上的射影在线段A1C上.
∴∠B1A1C就是A1B1与平面A1ECF所成的角.
∵A1B1⊥B1C,在Rt△A1B1C中,sin∠B1A1C=
B1C
CB1
=
6
3

∴A1B1与平面A1ECF所成角的弦值为
6
3

故选B
点评:本题考查的知识点是直线与平面所成的角,其中证得∠B1A1C就是A1B1与平面A1ECF所成的角,将线面夹角问题转化为解三角形问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案