精英家教网 > 高中数学 > 题目详情

如图所示,四棱锥P-ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M为PC的中点.

(1)求证:BM∥平面PAD;

(2)求证:面PDC⊥面PAD

(3)在侧面PAD内找一点N,使MN⊥平面PBD.

答案:
解析:

  解:(1)的中点,取PD的中点,则

  ,又

  四边形为平行四边形

  

  

  

  (2)由(1)知为平行四边形

  

  ,又

  ,同理

  ∵

  ∴面PDC⊥面PAD

  (3)由(2)知

  

  为矩形

  ∵

  ,又

  

  ∵

  

  作

  作,在矩形内,

  的中点

  当点的中点时,


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是一个矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱锥P-ABCD的体积.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若PC=
11
R
,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.
求证:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>

同步练习册答案