分析 利用换元法,可得f(m)=-m2+(a+2)m+1-a2,f(x)有3个零点,根据m=|t|=|ex-1|,可得f(m)的一根在(0,1),另一根在[1,+∞),由此,即可求出实数a的取值范围.
解答 解:令t=ex-1,ex=t+1,f(t)=1-t2+(a+2)|t|-a2,
令m=|t|=|ex-1|,则f(m)=-m2+(a+2)m+1-a2,
∵f(x)有3个零点,
∴根据m=|t|=|ex-1|,可得f(m)的一根在(0,1),另一根在[1,+∞),
∴$\left\{\begin{array}{l}{f(0)=1-{a}^{2}<0}\\{f(1)=a+2-{a}^{2}≥0}\end{array}\right.$
∴a∈(1,2].
故答案为(1,2].
点评 本题考查实数a的取值范围,考查函数的零点,考查方程根的研究,正确转化是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{16}+\frac{y^2}{32}=1$ | B. | $\frac{x^2}{32}+\frac{y^2}{4}=1$ | C. | $\frac{x^2}{32}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{64}+\frac{y^2}{32}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | mn=1 | B. | mn=-1 | C. | m+n=-1 | D. | m+n=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com