精英家教网 > 高中数学 > 题目详情
8.如果幂函数f(x)的图象经过点(2,8),则f(3)=27.设g(x)=f(x)+x-m,若函数g(x)在(2,3)上有零点,则实数m的取值范围是10<m<30.

分析 设幂函数f(x)=xα,把点(2,8)代入函数的解析式,求得α的值,即可得到函数的解析式,从而求出f(3)的值,求出g(x)的导数,得到函数的单调性,根据零点定理得到g(2)<0且g(3)>0,解出即可.

解答 解:设幂函数f(x)=xα
把点(2,8)代入函数的解析式可得2α=8,
解得 α=3,故函数的解析式为f(x)=x3
故f(3)=27,
g(x)=f(x)+x-m=x3+x-m,
g′(x)=3x2+1>0,
故g(x)在(2,3)递增,
若函数g(x)在(2,3)上有零点,
只需$\left\{\begin{array}{l}{g(2)=10-m<0}\\{g(3)=30-m>0}\end{array}\right.$,
解得:10<m<30,
故答案为:27,10<m<30.

点评 本题考查了幂函数的定义,考查函数的零点问题以及导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为(  )
A.20($\sqrt{2}$+$\sqrt{6}$)海里/时B.20($\sqrt{6}$-$\sqrt{2}$)海里/时C.20($\sqrt{3}$+$\sqrt{6}$)海里/时D.20($\sqrt{6}$-$\sqrt{3}$)海里/时

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=($\frac{1}{9}$)${\;}^{\frac{1}{3}}$,b=log93,c=3${\;}^{\frac{1}{9}}$,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(3)的x取值集合是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则(  )
A.f(x1)<f(x2B.f(x1)>f(x2
C.f(x1)=f(x2D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=4sinx(cosx-sinx)+3
(Ⅰ)当x∈(0,π)时,求f(x)的单调递减区间;
(Ⅱ)若f(x)在[0,θ]上的值域为[0,2$\sqrt{2}$+1],求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足z+zi=3+2i,则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax2-lnx,a∈R.
(Ⅰ)当a=1时,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)是否存在实数a,使函数f(x)在区间(0,e]上的最小值为$\frac{3}{2}$,若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设e为自然对数的底数,若函数f(x)=ex(2-ex)+(a+2)•|ex-1|-a2存在三个零点,则实数a的取值范围是(1,2].

查看答案和解析>>

同步练习册答案