精英家教网 > 高中数学 > 题目详情
三棱锥的三条侧棱两两垂直,其长分别是1、
2
3
,则此三棱锥的外接球的表面积是
分析:由已知中三棱锥的三条侧棱两两相互垂直,故可将其补充为一个长方体,根据外接球的直径等于长方体的对角线,求出球的半径,代入球的表面积公式,即可求出答案.
解答:解:∵三棱锥的三条侧棱两两相互垂直,且三条侧棱长分别是1、
2
3

∴可将其补充为一个长宽高分别是1、
2
3
的长方体,
∴其外接球的直径2R=
1+2+3
=
6

∴三棱锥的外接球的表面积S=4πR2=6π
故答案为:6π.
点评:本题考查球的表面积,构造长方体,求出其外接球的半径是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、三棱锥的三条侧棱两两垂直,则这个三棱锥的顶点在底面三角形所在平面上的射影必是底面三角形的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若直角三角形的两条直角边长度分别为a,b,则此三角形的外接圆半径r=
a2+b2
2
,运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥的三条侧棱两两相等,则顶点在底面的射影为底面三角形的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若三棱锥的三条侧棱两两相互垂直,且三条侧棱长分别为1,2,3,则其外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm,2cm和
3
cm,则此球的体积为(  )

查看答案和解析>>

同步练习册答案