精英家教网 > 高中数学 > 题目详情
如图,在四棱柱中,侧棱底面,

(Ⅰ)求证:平面
(Ⅱ)若直线与平面所成角的正弦值为,求的值
(Ⅲ)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式。(直接写出答案,不必说明理由)
(Ⅰ)见解析(Ⅱ)1(Ⅲ)共有种不同的方案
(Ⅰ)取中点,连接

               
四边形为平行四边形

中,

,即,又,所以
平面平面
,又
平面
(Ⅱ)以为原点,的方向为轴的正方向建立如图所示的空间直角坐标系
所以
设平面的法向量,则由
,得
与平面所成角为,则
,解得.故所求的值为1
(Ⅲ)共有种不同的方案

立体几何第一问对于关系的决断往往基于对公理定理推论掌握的比较熟练,又要善于做出一线辅助线加以证明,那么第二问就可以在其基础上采用坐标法处理角度或者距离问题,坐标法所用的公式就必需熟练掌握,第三问主要考查了学生的空间思维能力,要在平时多加练习。此题坐标法也很考验学生的计算功底。
【考点定位】 本题主要考查立体几何中线线关系线面关系的判断以及线面角的算法,并且通过第三问的设问又把几何体的表面积与函数巧妙的结合起来,计算和空间思维要求比较高。属于难题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面平面. 过点,垂足为,点分别为棱的中点.

求证:(1)平面平面
(2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,二面角均为,则下列不可能成立的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(    )
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果三个平面把空间分成六个部分,那么这三个平面的位置关系是                      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是不同的直线,是不同的平面,下列命题中正确的是
A.若m//
B.若m//
C.若m//
D.若m//

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面,直线,下列命题中不正确的是              (  )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三角形中,分别是边上的点,满足(如图1).将△沿折起到的位置,使二面角成直二面角,连结(如图2)
    
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案