精英家教网 > 高中数学 > 题目详情
(2012•江苏二模)如图,已知A、B是函数y=3sin(2x+θ)的图象与x轴两相邻交点,C是图象上A,B之间的最低点,则
AB
AC
=
π2
8
π2
8
分析:由条件求出|AB|、|AC|的值,再求出cos∠CAB=
|AB|
2|AC|
,再根据两个向量的数量积的定义求出
AB
AC
=|AB|•|AC|•cos∠CAB 的值.
解答:解:由题意可得|AB|=
1
2
2
=
π
2
,点C的纵坐标为-3,故|AC|=
(
π
4
)
2
+(-3) 2
=
π2
16
+9

且cos∠CAB=
|AB|
2
|AC|
=
|AB|
2|AC|

AB
AC
=|AB|•|AC|•cos∠CAB=
|AB|2
2
=
π2
8

故答案为
π2
8
点评:本题主要考查两个向量的数量积的定义,由函数y=Asin(ωx+∅)的部分图象求解析式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏二模)设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
(1)若α∥β,m?β,n?α,则m∥n;
(2)若α∥β,m⊥β,n∥α,则m⊥n;
(3)若α⊥β,m⊥α,n∥β,则m∥n;
(4)若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,在C城周边已有两条公路l1,l2在点O处交汇,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城,已知OC=(
2
+
6
)km
,∠AOB=75°,∠AOC=45°,设OA=xkm,OB=ykm.
(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点A、B的位置,使△OAB的面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)设实数n≤6,若不等式2xm+(2-x)n-8≥0对任意x∈[-4,2]都成立,则
m4-n4
m3n
的最小值为
-
80
3
-
80
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)已知双曲线
x2
m
-
y2
3
=1(m>0)
的一条渐近线方程为y=
3
2
x
,则m的值为
4
4

查看答案和解析>>

同步练习册答案