精英家教网 > 高中数学 > 题目详情
(2013•盐城三模)设点P是曲线y=x2上的一个动点,曲线y=x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=x2的另一交点为Q,则PQ的最小值为
3
3
2
3
3
2
分析:设出P点坐标,求导得直线l的斜率,则过点P且与直线l垂直的直线方程可求,和抛物线联立后求出Q点的坐标,利用两点式写出PQ的距离,先利用换元法降幂,然后利用导数求最值.
解答:解:设P(x0x02),由y=x2y|x=x0=2x0
所以过点P且与直线l垂直的直线方程为y-x02=-
1
2x0
(x-x0)

联立y=x2得:2x0x2+x-2x03-x0=0
设Q(x1,y1),则x0+x1=-
1
2x0
,所以x1=-
1
2x0
-x0

y1=x12=(-
1
2x0
-x0)2=
1
4x02
+x02+1

所以|PQ|=
(x1-x0)2+(y1-y0)2

=
(-
1
2x0
-2x0)2+(
1
4x02
+1)2

=
1
4x02
+2+4x02+
1
16x04
+
2
4x02
+1

4x02+
1
16x04
+
3
4x02
+3

令t=4x02>0
g(t)=t+
1
t2
+
3
t
+3

g(t)=1-
2
t3
-
3
t2
=
(t+1)2(t-2)
t3

当t∈(0,2)时,g(t)<0,g(t)为减函数,
当t∈(2,+∞)时,g(t)>0,g(t)为增函数,
所以g(t)min=g(2)=
27
4

所以PQ的最小值为
3
3
2

故答案为
3
3
2
点评:本题考查了利用导数求曲线上某点的切线方程,考查了利用导数求函数的最值,解答此题的关键是把高次幂的函数式通过换元降幂,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•盐城三模)已知函数f (x)=2sin(ωx+?)(ω>0)的部分图象如图所示,则ω=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)记函数f(x)=
3-x
的定义域为A,函数g(x)=lg(x-1)的定义域为B,则A∩B=
(1,3]
(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)选修4-2:矩阵与变换
已知矩阵M=
.
1a
b1
.
对应的变换将点A(1,1)变为A′(0,2),将曲线C:xy=1变为曲线C′.
(1)求实数a,b的值;
(2)求曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)选修4-4:坐标系与参数方程已知圆C的极坐标方程为ρ=4cos(θ-
π
6
),点M的极坐标为(6,
π
6
),直线l过点M,且与圆C相切,求l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)选修4-5:不等式选讲解不等式x|x-4|-3<0.

查看答案和解析>>

同步练习册答案