精英家教网 > 高中数学 > 题目详情
已知f(x)=
x2-1
2x2-5
(x≥0)
(x<0)
编写一个程序,对每输入的一个x值,都得到相应的函数值.
分析:本题考查的知识点是设计程序解决实际问题,我们根据题目已知中分段函数的解析式f(x)=
x2-1
2x2-5
(x≥0)
(x<0)
,然后根据分类标准,设置两个选择语句的并设置出判断的条件,再由函数各段的解析式,确定判断条件的“是”与“否”分支对应的操作,由此即可编写满足题意的程序.
解答:解:程序是:input x
If x>=0 then
y=x*x-1
Else
y=2*x^2-5
End if
Print y
end
点评:本题考查了设计程序伪代码解决实际问题.主要考查编写程序解决分段函数问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案