精英家教网 > 高中数学 > 题目详情
a
b
c
是任意的平面向量,给出下列命题:
(
a
b
)
c
=(
b
c
)
a

②若
a
b
=
a
c
,则
a
⊥(
b
-
c
)

(
a
+
b
)(
a
-
b
)=|
a
|2-|
b
|2

(
a
b
)2=
a
2
b
2

其中正确的是
.(写出正确判断的序号)
分析:利用向量共线定理和数量积的性质即可得出.
解答:解:①
a
c
不一定共线,因此(
a
b
)
c
=(
b
c
)
a
不一定成立,因此不正确;
②若
a
b
-
c
都是非零向量,若
a
b
=
a
c
,的
a
•(
b
-
c
)=0
,则
a
⊥(
b
-
c
)
,因此②不正确;
③利用向量数量积的性质(
a
+
b
)•(
a
-
b
)
=|
a
|2-|
b
|2
,因此正确;
④∵(
a
b
)2=(|
a
| |
b
|cos<
a
b
)2
=|
a
|2•|
b
|2•cos2
a
b
≠|
a
|2|
b
|2
,因此不正确.
综上可知:只有③.
故答案为③.
点评:熟练掌握向量共线定理和数量积的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量,且相互不共线,则
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直;
(3
a
+2
b
)•(3
a
-2
b
)
=9|
a
|2-4|
b
|2
中是真命题的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量且互不共线,以下四个命题:
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|+|
b
|>|
a
+
b
|

(
b
c
)•
a
-(
c
a
)•
b
c
垂直

④两单位向量
e1
e2
平行,则
e1
e2
=1

⑤将函数y=2x的图象按向量
a
平移后得到y=2x+6的图象,
a
的坐标可以有无数种情况.
其中正确命题是
②③⑤
②③⑤
(填上正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量,且相互不共线,则
(
a•
b
)
c
-(
c
a
)
b
=0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直         
(3
a
+2
b
)(3
a
-2
b
)=9|
a
|2-4|
b
|2
中,是真命题的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,给定下列结论
①(
a
b
)•
c
-(
c
a
)•
b
=
0
   
②|
a
|-|
b
|<|
a
-
b
|
③(
b
c
)•
a
-(
c
a
)•
b
不与
c
垂直
④(3
a
+2
b
)•(3
a
-2
b
)=9
a2
-4
b2

其中正确的叙述有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,有下列命题:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不与
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命题的有(  )

查看答案和解析>>

同步练习册答案