精英家教网 > 高中数学 > 题目详情
已知直线与抛物线没有交点;方程表示椭圆;若为真命题,试求实数的取值范围.

试题分析:因为为真命题,所以为真命题且为真命题.命题为真时,直线与抛物线没有交点.命题为真时,,.综合得实数的取值范围为.本题易错点为忽视去掉方程为圆的情况.
试题解析:解:因为为真命题,所以为真命题且为真命题        2分
消去
直线与抛物线没有交点,,解得      6分
方程表示椭圆,则
解得                                   10分
由上可知的取值范围是                      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:的离心率为,短轴长是2.

(1)求a,b的值;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点(,).

(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,则以A、B为焦点且过点C的椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线2x+y-4=0过椭圆E:的右焦点F2,且与椭圆E在第一象限的交点为M,与y轴交于点N,F1是椭圆E的左焦点,且|MN|=|MF1|,则椭圆E的方程为   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x与椭圆C:+=1的交点在x轴上的射影恰好是椭圆的焦点,则椭圆C的离心率为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设P为椭圆+=1(a>b>0)上的任意一点,F1为椭圆的一个焦点,则|PF1|的取值范围为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别为椭圆的左、右焦点,点在椭圆上,若,则点的坐标是__________

查看答案和解析>>

同步练习册答案