精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+2ax+1-a在0≤x≤1时有最大值2,求a的值.
分析:二次函数求最值,要注意讨论对称轴与区间的位置关系,求出最值后等于2,即可求a的值
解答:解:原函数的对称轴为x=a,开口向下
①当a<0时,f(x)在[0,1]上单调递减
∴f(x)的最大值为f(0)=1-a=2
∴a=-1<0
∴a=-1符合题意
②当0≤a≤1时
f(x)的最大值为f(a)=-a2+2a2+1-a=a2-a+1=2
a=
1-
5
2
或a=
1+
5
2
∉[0,1]
∴不合题意,无解
③当a>1时,f(x)在[0,1]上单调递增
∴f(x)的最大值为f(1)=-1+2a+1-a=a=2>1
∴a=2符合题意
综①②③得a=-1或a=2
点评:本题考察二次函数求最值问题,注意对称轴与区间的位置关系,当对称轴于区间的位置关系不确定时,须分类讨论,从而得到原函数的单调性,进而可以求最值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案