精英家教网 > 高中数学 > 题目详情

【题目】随机调查某城市80名有子女在读小学的成年人,以研究晚上八点至十点时间段辅导子女作业与性别的关系,得到下面的数据表:

    是否辅导

性别

辅导

不辅导

合计

25

60

合计

40

80

1)请将表中数据补充完整;

2)用样本的频率估计总体的概率,估计这个城市有子女在读小学的成人女性晚上八点至十点辅导子女作业的概率;

3)根据以上数据,能否有99%以上的把握认为“晚上八点至十点时间段是否辅导子女作业与性别有关?”.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

【答案】1)见解析;(2;(3)有把握.

【解析】

1)由表可依次求出男性不辅导的人数、女性辅导的人数、不辅导的人数、女性的人数、女性不辅导的人数,由此得到答案;

2)根据频率的计算公式求解即可;

3)求出,然后与比较大小,由此可求得结论.

解:(1)如表,

    是否辅导

性别

辅导

不辅导

合计

25

35

60

15

5

20

合计

40

40

80

2)在样本中有20位女士,其中有15位辅导孩子作业,其频率为

∴估计成人女士晚上八点至十点辅导孩子作业的概率为

3)∵

∴有99%的把握认为“晚上八点至十点时间是否段辅导孩子作业与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10)

某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米,房屋正面的造价为400/m2,房屋侧面的造价为150/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.

1)把房屋总造价表示成的函数,并写出该函数的定义域.

2)当侧面的长度为多少时,总造价最底?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Snnn+2)(nN*).

1)求数列{an}的通项公式;

2)设bn,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在促销期间规定:商场内所有商品按标价的出售,当顾客在商场内消费一定金额后,按如下方案获得相应金额的奖券:

消费金额(元)的范围

获得奖券的金额(元)

30

60

100

130

根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:元,设购买商品得到的优惠率=(购买商品获得的优惠额)/(商品标价),试问:

1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?

2)对于标价在(元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,其中为常数.

1)证明:

2)是否存在,使得为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,MN是小圆的一条固定直径的两个端点,那么,当小圆这样滚过大圆内壁的一周,点MN在大圆内所绘出的图形大致是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.

)求的方程;

)若直线,且有且只有一个公共点

)证明直线过定点,并求出定点坐标;

的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直角中,为直角,分别为的中点,将沿折起,使点到达点的位置,连接的中点.

(Ⅰ)证明:

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点为椭圆的右焦点,过的直线与椭圆交于两点,线段的中点为.

1)求椭圆的方程;

2)若直线斜率的乘积为,两直线分别与椭圆交于四点,求四边形的面积.

查看答案和解析>>

同步练习册答案