精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1
分析:将所求值的中自变量代入分段函数解析式即可得到函数值.
解答:解:由题意知,f(-1)=1,f(0)=0,
则f(1)=f(0)-f(-1)=-1,
f(2)=f(1)-f(0)=-1,
f(3)=f(2)-f(1)=0,
f(4)=f(3)-f(2)=1,
f(5)=f(4)-f(3)=1,
f(6)=f(5)-f(4)=0,
f(7)=f(6)-f(5)=-1
=f(1),

所以f(2011)=f(6×335+1)=f(1)=-1,
故答案为(1)f(3)=0;(2)f(2011)=-1.
点评:本题主要考查了函数的周期性,以及函数求值,同时考查了转化的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案