精英家教网 > 高中数学 > 题目详情
已知函数
(1)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(2)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.
【答案】分析:(1)先求f(1),利用(1,f(1))在y=f(x)上,及f'(1)=-1,建立方程,即可求得函数解析式,进而可得函数的极值,利用函数的最值在极值与端点处取得,可得结论;
(2)因为函数f(x)在区间(-1,1)不单调,所以函数f'(x)在(-1,1)上存在零点,利用f'(-1)f'(1)<0,即可求得a的取值范围.
解答:解:(1)∵(1,f(1))在x+y-3=0上,∴f(1)=2
∵(1,2)在y=f(x)上,

又f'(1)=-1,∴1-2a+a2-1=-1
∴a2-2a+1=0,解得

由f'(x)=0可知x=0和x=2是f(x)的极值点.

∴f(x)在区间[-2,4]上的最大值为8.
(2)因为函数f(x)在区间(-1,1)不单调,所以函数f'(x)在(-1,1)上存在零点.
而f'(x)=0的两根为a-1,a+1,区间长为2,
∴在区间(-1,1)上不可能有2个零点.
所以f'(-1)f'(1)<0,即a2(a+2)(a-2)<0.
∵a2>0,∴(a+2)(a-2)<0,-2<a<2.
又∵a≠0,
∴a∈(-2,0)∪(0,2).
点评:本题考查导数知识的运用,考查函数的最值,考查函数的单调性,考查学生分析解决问题的能力,函数f(x)在区间(-1,1)不单调,转化为函数f'(x)在(-1,1)上存在零点是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(2)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宣武区质量检一)(13分)

已知函数 

(1)       若上是减函数,求的最大值;

(2)       若的单调递减区间是,求函数y=图像过点的切线与两坐标轴围成图形的面积。

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学六模试卷(文科)(解析版) 题型:解答题

已知函数
(1)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(2)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省高三第二次(10月)月考理科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知函数

(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;

 (2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;

 (3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案