精英家教网 > 高中数学 > 题目详情

(08年宣武区质量检一)(13分)

已知函数 

(1)       若上是减函数,求的最大值;

(2)       若的单调递减区间是,求函数y=图像过点的切线与两坐标轴围成图形的面积。

解析:(1)=,由题意可知,

在(0,1)上恒有

,得

所以a的最大值为 -1 ……………………………………………………….5分

(2)的单调递减区间是

==0的两个根为 和1,

可求得a= -1,

①     若(1,1)不是切点,则设切线的切点为

则有

, 解得(舍),,k= -1

②     若(1,1)是切点,则k=

综上,切线方程为y=1,x+y-2=0

这两条切线方程与两坐标轴围成的图形为直角梯形

它的面积S=…………………………………………………………..13分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年宣武区质量检一文)(14分)

已知二次函数f(x)=同时满足:①不等式f(x)0的解集有且只有一个元素②在定义域内存在0,使得不等式成立。设数列{}的前n项和.

(1)       求函数f(x)的表达式;

(2)       求数列{}的通项公式;

设各项均不为零的数列{}中,所有满足的整数i的个数称为这个数列{}的变号数。令(n为正整数),求数列{}的变号数。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宣武区质量检一文)(14分)

已知圆O:和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足

(1)       求实数a、b间满足的等量关系;

(2)       求线段PQ长的最小值;

(3)       若以P为圆心所做的圆P与圆Q有公共点,试求半径取最小值时,圆P的方程。

                                               

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宣武区质量检一)(13分)

    如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,

AB=BC,D是PB上一点,且CD平面PAB

(1)       求证:AB平面PCB;

(2)       求异面直线AP与BC所成角的大小;

(3)       求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宣武区质量检一)(13分)

    已知向量m =, 向量n = (2,0),且mn所成角为

其中A、B、C是的内角。

(1)       求角B的大小;

(2)       求 的取值范围。

 

查看答案和解析>>

同步练习册答案